REPAIR AND REHABILITATION OF CONCRETE STRUCTURES **Dr. B. VIDIVELLI** Professor Civil & Structural Engineering Annamalai University

MECHANICAL PROPERTIES

- Compressive strength
- Tensile strength
- Flexure strength
- Bond strength
- Shrinkage
- Elasticity
- Thermal expansion
- Creep

REHABILITATION

- Durability and Determination
- Damage Assessment
- Repair materials
- Rehabilitation and Strengthen Techniques
- Maintenance and Demolition
 Techniques

DURABILITY OF CONCRETE

- A concrete is said to be durable if it withstand without deterioration, over a design period or design life of years.
- The influencing factors:
- (a) External factors
- (b) Internal factors

Environmental Penetrations into Concrete

DAMAGES TO STRUCTURES

- Discoloration
- Cracking (includes pattern cracks)
- Spalling of materials
- Deformations / Deterioration
- A total or partial collapse

COMMON CAUSES Accidental Loadings Chemical Reactions Construction Errors Corrosion of Reinforcement Design Errors Freezing and Thawing - Erosion, Abrasion, Cavitations

8

- Settlement and Movement
- Shrinkage
- Temperature Changes
- Weathering
- Effect of cover thickness
- Thermal properties
- Effect of cracking

SHRINKAGE

Shrinkage in concrete means moisture movement in concrete. Plastic shrinkage Drying shrinkage Autogenous shrinkage Carbonation shrinkage

PLASTIC SHRINKAGE CRACKS

FREEZE AND THAW

Freeze-thaw disintegration or deterioration takes place when the following conditions are present:

- Temperature cycles within the concrete
- Porous concrete

Mechanism of Deterioration

CRAZING

- Development of a network of fine random cracks on the surface of concrete
- Excessive floating and traveling
- Spreading dry cement on a surface and sprinkling water on concrete

HONEY COMBING

 Honeycomb consists of exposed pockets of coarse aggregates not covered by a surface layer of mortar.

 It may be caused by inadequate consolidation, presence of excess water in concrete or by leaky forms, which allow the mortar to escape.

SWELLING

 Continuously in water from the time of casting exhibits a net increase in volume

 Due to continued hydration of cement is known as swelling.

 Due to the absorption of water by the cement gel.

POPOUTS

- A conical-shaped hole in the surface
- Occur outdoors on the hl & vl surfaces.
- Caused by freezing of water in aggregate
- Start to appear during the first winter following construction

- Do not harm the concrete but unsightly.
- Prevented only by avoiding aggregates which cause them

 Concrete, brickwork and timber when subjected to sustained loads not only undergoes instaneous elastic deformation but also exhibit a time-dependent deformation known as

creep.

ABRASION, EROSION AND CAVITATIONS

- Abrasion refers to wearing away of the surface by friction.
- Erosion refers to wearing away of the surface by fluids.
- The cavitations refer to the damage due to non-linear flow of water at velocities more than 12 m/sec.

TEMPERATURE CHANGES

Changes in temperature cause a corresponding change in the volume of concrete.

- Internally generated temperature differences
- Externally generated temperature differences

FIRE ON CONCRETE

A fire in a concrete structure causes damage.

The extent of which depends upon the intensity and duration of the fire.

THERMAL MOVEMENT IN CONCRETE

Cracking in top most storey of a load bearing structure

Cracking in cladding and cross walls of a framed structure

ENLARGED DETAIL AT A

CONSTRUCTION ERRORS

- Adding water to concrete
- Improper alignment of formwork
- Improper consolidation
- Improper curing
- Improper location of reinforcing steel
- Premature removal of shores / formwork
- Settling of the concrete

- Settling of the sub-grade
- Vibration of freshly placed concrete
- Improper finishing of flat work
- Adding water to the surface
- Timing of finishing
- Adding cement to the surface
- Use of tamper
- Jointing

LOADING ERRORS

- CRACKING DUE TO CONSTRUCTION OVERLOADS
- CRACKS DUE TO EXTERNALLY APPLIED LOADS
- ACCIDENTAL LOADINGS

DESIGN ERRORS

- Inadequate structural design
- Poor design details
- Abrupt changes in section
- Insufficient reinforcement
- Inadequate provision for deflection

noisivorg

for

Inadequate
 Chainage

- Insufficient travel in expansion joints
- Incompatibility of materials
- Neglect of creep effect
- Rigid joints between precast units
- Unanticipated shear stresses in piers, columns, or abutments

Inadequate joint spacing in slabs

CHEMICAL ATTACK

 Acid attack Alkali attack Carbonation Chloride attack Leaching Salt attack Sulphate attack.

INFLUENCING FACTORS

• Time

- Cover to reinforcement
- Concentration of carbon-dioxide in the atmosphere
- Permeability of concrete
- Alkali content in the concrete
- Condition of concrete cover

SULPHATE ATTACK

ACID ATTACK

CHLORIDE ATTACK

 Chlorides can be introduced into concrete by coming into contact with environments containing chlorides, such as seawater or deicing salts.

Penetration takes time, depending upon:

- -The amount of chlorides coming into contact with the concrete
- -The permeability of the concrete

-The amount of moisture present

BIOLOGICAL ATTACK

 Existence of vegetation, such as fast growing trees in the vicinity of compound walls can sometimes cause cracks in walls due to expansive action of roots growing under the foundation.

CORROSION PROCESS

Service life model for corrosion affected structures

INFLUENCING FACTORS

- The environment to which the structure is exposed
- The cover thickness
- Quality of cover concrete
- The type of steel
- Critical chloride in concrete and
- Presence of cracks

Typical symptoms of corrosion

STAINS AND CRACKS

RADIAL FRACTURE

.

LONGITUDINAL CRACK

DELAMINATION

SPALLING

Typical symptoms of corrosion in **RC** beam

POP-OUTS

CORROSION PROTECTION TECHNIQUES

- **Coating to reinforcement**
- **Galvanized reinforcement**
- □ Improving metallurgically
- Using stainless steel
- Using non-ferrous reinforcement
- Using corrosion inhibitors
- **Coating to concrete**
- **Cathodic protection**
- Electrochemical chloride removal
- Improving the cover concrete.

INVESTIGATION OF DAMAGE

- Documentation of damage
- Visual observation
- Measurements on geometrical parameters
- Experiments for evaluating material properties
- Interpretation and analysis of test results
- Analysis of the building its damaged state

TESTING SYSTEM OF HARDENED CONCRETE

- (a) Non Destructive Testing System (NDTS)
- (b) Partially Destructive Testing System (PDTS)
- (c) Destructive Testing System (DTS)

Non-destructive Testing Methods

- Surface Hardness Method
- Ultrasonic Pulse Velocity Method
- Resonant Frequency Method
- Dynamic or vibration method
- Pulse Attenuation Method
- Pulse Echo Method
- Radioactive Method
- Nuclear Methods
- Magnetic Methods
- Electro magnetic methods
- Electrical Methods
- Acoustic Emission Technique
- Radar Technique
- Radiography Methods

Surface Hardness Test

A Typical Rebound Hammer

Typical Calibration Curves

Conversion Curves, Concrete Test Hammer Model N/NR Concrete pressure resistance of a cylinder after 14 - 56 days Conversion Curves, Concrete Test Hammer Model L/LR Concrete pressure resistance of a cylinder after 14 - 56 days

Quality of Cover Concrete from Rebound Number

Average rebound number

Greater than 40 30 to 40 20 to 30 less than 20 0 Quality of concrete

very good hard layer good layer fair poor concrete delaminated

Ultrasonic Pulse Velocity (UPV) Test

Quality of Concrete from UPV

UPV value km/sec (V)	Concrete quality
V greater than 4	Very good
V between 3.5 & 4	Good
V between 3 & 3.5	Poor
V between 2.5 & 3	Very poor
V between 2 & 2.5	Very poor & low integrity
V less than 2	Large voids suspected

Electro Magnetic Method

HR Rebar Locator

Datascan

Datascan MK II

Semi-Destructive Testing Systems

- Penetration Techniques
- Pull-out and Pull-off Tests
- Core sampling and testing
- Break off test
- Permeability Test
- Half–cell potential survey
- Resistivity survey
- Carbonation and pH value test
- Chloride content test
- Abrasion resistance test.

Core Sampling and Testing

- Core location and size
- Testing
- Trimming
- Capping
- Density determination

Advanced Permeability Tester

Corrosion analyzer equipment – Cor map II

Corrosion Risk based on Resistivity Values

Resistivity ohm cm	Corrosion probability
Greater than 20,000	Negligible
10,000 to 20,000	Low
5,000 to 10,000	High
less than 5,000	Very high

Classification of Repair Material

- Patch Repair Materials
- Injection Grouts
- Bonding Aids
- Resurfacing Materials
- Other Repair Materials

ADMIXTURES FOR REHABILITATION

- Polymer dispersions or lattices
- Latex modified system
- Epoxy resins
- Polymeric materials
- Organic polymers

The repair of cracks can be achieved with the following techniques:

- Resin injection
- Routing and Sealing
- Stitching
- External stressing
- Bonding
- Blanketing
- Overlays
- Dry pack

Vacuum impregnation
Polymer impregnation
Caulking

Autogenous healing Flexible sealing Drilling and Plugging Bandaging Coating Grinding Sand blasting Acid etching

Diagram of Crack Injection

Use of injection ports in drilled holes

Use of T-injection ports placed flush on concrete surface

PIPE FROM INJECTION

EQUIPMENT

L TUBE

EPOXY MORTAR AND PIPE ARE NOT TO BE INSERTED FULLY IN

HOLES DRILLED IN CONTAMINATED CRACKS USING DRILL WITH ATTACHMENT FOR FLUSHING CRACKS OR VACUUMING

Repair of crack by routing and sealing

Repair of crack by stitching

Repair of cracks by external stressing

Repair of crack by drilling and plugging

Replacing of concrete using pressurized form

Preplaced Aggregate concrete

(c) SOFFIT OF SLAB

Need for Strengthening

- Load increases due to higher live loads
- Damage to structural parts
- Improvements in suitability for use
- Modification of structural system
 Errors in planning or construction

Unsuccessful Concrete Repair

STRUCTURAL CONCRETE STRENGTHENING

- Column strengthening
- Strengthening and stiffening of beams and girders
- Strengthening and stiffening of slabs

Jacketing Technique

Plate Bonding Technique

Externally bonded steel plates with FRP

Strengthening with carbon FRP sheets

Short Spanning Technique

External Post-Tensioning Technique

Section Enlargement Technique

Routine Building Maintenance

- Whitewashing or color washing
- Distempering
- Plaster and roof repairs
- Roof repair for leakages
- Replacement of fittings and fixtures

TYPES OF DEMOLITION Selective Demolition Hydro Demolition Marine Demolition Underwater Demolition Bridge Demolition Building Demolition Nuclear Demolition Runway Demolition

FERROCEMENT DOMES

SOUTH SULAWESI D=6m, H=4.5m

TAKALAR, UJUNG PANDANG D=12 m, H=5 m

KAMPONG KORUISI, UJUNG PANDANG

SOUTH ACEH D=2.5 m, H=1.5 m

LIMBUG D=6m, H=3m

MASJID RAYA, UJUNG PANDANG FERROCEMENT DOMES FOR INDONESIAN MOSQUE (D=DIAMETER, H = HEIGHT)

TAPAK TUAN, SOUTH ACEH D=10m, H=8.5m

SOPPENG UJUNG PANDANG D=12 m, H=6 m

YOGYAKARTA, D = 6 m, H = 4 m

FERROCEMENT ROOFING PANELS & DOORS

FERROCEMENT IN BUILDING INDUSTRY

Crashed Balcony

Closed view of new ferrocement Balcony

FIBERS IN CONCRETE

FIBERS IN CONCRETE

Bibliography

- 1. M.S.Shetty, Concrete Technology Theory and Practice, S.Chand and Company Ltd, New Delhi, 2005.
- 2. B.L.Gupta and Amit Gupta, Concrete Technology, Standard Publishers Distributors, Delhi, 2004
- 3. B.L. Gupta and Amit Gupta, Maintenance and Repair of Civil Structures, Standard Publishers Distributors, Dehli.
- 4. M.L.Gambhir, Concrete Technology, Tata McGraw–Hill Publishing Company Limited, New Delhi, 2004.
- 5. Johnson, S.M., Deterioration, maintenance, and repair of structures, Mc-Graw-Hill Book Co., New York, 1965.
- 6. R.T.L.Allen and S.C.Edwards, The Repair of Concrete Structures, Blackie & Son Ltd, London, 1987.
- 7. N.P.Mailvaganam, Repair and Protection of Concrete Structures, CRC Press, 1991.
- 8. Peter H.Emmons, Concrete Repair and Maintenance Illustrated, Galgotia Publications, New Delhi, 2001.
- 9. B.S.Nayak, A Manual on Maintenance Engineering, Khanna Publishers, Delhi.
- 10. W.L. Sheppard: Corrosion and Chemical Resistant Masonry Materials Handbook, Standard Publishers Distributors, Delhi.
- 11. Proceedings of Advanced course on High Performance Materials and Methodologies for Construction and Rehabilitation of Concrete Structures, Structural Engineering Research Centre, Chennai, January 2000.
- 12. Proceedings of National Conference on Civil Engineering Materials and Structures, January 19-21, 1995, Osmania University, India.
- 13. BIS 456-2000; Code of Practice for Plain and Reinforced Concrete.
- 14. BIS 13311 Part 1 & 2, 1992 Recommendation for Non-Destructive method test for Concrete.
- 15. SP 24-1984; Handbook on causes and prevention of cracks in buildings, Bureau of Indian Standards.
- 16. Ferrocement Model Code, Reported by International Ferrocement Society, Committee 10, January 2001.
- 17. ACI Committee 201, Guide to Durable Concrete, American Concrete Institute, Detroit, 1982.
- 18. ACI Committee 548, Polymer concrete, Polymer modified concrete, ACI Manual of Concrete Practice, Part 5, 1998.

- 21. General Awareness Information, Rapid Structural Safety Assessment & Monitoring for Reinforced Structure, Engineer Professional Advisory Committee, U.S. Public Health Service, June 2003.
- 22. Fritz, C., Naaman, A.E., and Reinhardt, H.W., "SIFCON Matrix in RC beams in High Performance Fiber Reinforced Cement Composites, Proceedings of the International Workshop held by RILEM, ACI and others June 23-26, 1991, Mainz, Germany; Ed. by H.W. Reinhardt and A.E. Naaman; 1st ed.; E & FN Spon London, 1992, pp 518-528. (RILEM proceedings, vol. 15)

REHABILITATION OF

- 23. Lin, Mark W.; Abatan, Ayo O.; Zhang, Wei-Min., Crack damage detection of concrete structures using distributed electrical time domain reflectometry (ETDR) sensors, Proc. SPIE Vol. 3671, p. 297-304, Smart Structures and Materials 1999: Smart Systems for Bridges, Structures, and Highways, Steve C. Liu; Ed.
- 24. Smoak, W. Glenn Guide to Concrete Repair, published by the US Department of the Interior, Bureau of Reclamation, Technical Service Center, April 1997.
- 25. Tarek Alkhrdaji and Jay Thomas, Design, application techniques key to successful structural repair, strengthening of aging concrete facilities, By Concrete Monthly, February 2004
- 26. Naaman, A.E. SIFCON: Tailored properties for structural performance in High Performance Fiber Reinforced Cement Composites, Proceedings of the International Workshop held by RILEM, ACI and others, June 23-26, 1991, Mainz, Germany, 1992, pp. 18-38. (RILEM proceedings, vol. 15)
- 27. Structural Applications of Glass-fibre Reinforced Concrete Components (STRUCTA-GRC), EC Proposal N° CRAFT-BES2-5315 / Contract N° BRST-CT98-5232.
- 28. Hackman, L.E., Farrell, M.B., and Dunham, O.O., Slurry infiltrated mat concrete (simcon), Concrete International, Dec 1992, Vol. 14, No. 12, pp 53-56.
- 29. Nanni, A. Properties of aramid-fiber reinforced concrete and SIFCON, Journal of Materials in Civil Engineering, Feb 1992, Vol. 4, No. 1, pp 1-15.
- 30. Balaguru, P.N., Narahari, R., and Patel, M., Flexural toughness of steel fiber reinforced concrete, ACI Materials Journal, Nov-Dec 1992, Vol. 89, No. 6, pp 541-545.
- 31. David R. Lan Kar, Properties, applications: Slurry infiltrated Fiber Concrete (SIFCON), Concrete International, No 6, volume 12, December 1, 1984.
- 32. Taerwe, L.R. Influence of steel fibers on strain-softening of high-strength concrete, ACI Materials Journal, Jan-Feb 1992, Vol. 89, No. 1, pp 54-60.

